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Abstract: We use a newly released version of the SuperBayeS code to analyze the impact

of the choice of priors and the influence of various constraints on the statistical conclusions

for the preferred values of the parameters of the Constrained MSSM. We assess the effect

in a Bayesian framework and compare it with an alternative likelihood-based measure of

a profile likelihood. We employ a new scanning algorithm (MultiNest) which increases

the computational efficiency by a factor ∼ 200 with respect to previously used techniques.

We demonstrate that the currently available data are not yet sufficiently constraining to

allow one to determine the preferred values of CMSSM parameters in a way that is com-

pletely independent of the choice of priors and statistical measures. While BR(B → Xsγ)

generally favors large m0, this is in some contrast with the preference for low values of

m0 and m1/2 that is almost entirely a consequence of a combination of prior effects and

a single constraint coming from the anomalous magnetic moment of the muon, which re-

mains somewhat controversial. Using an information-theoretical measure, we find that

the cosmological dark matter abundance determination provides at least 80% of the to-

tal constraining power of all available observables. Despite the remaining uncertainties,

prospects for direct detection in the CMSSM remain excellent, with the spin-independent

neutralino-proton cross section almost guaranteed above σSI
p ∼ 10−10 pb, independently

of the choice of priors or statistics. Likewise, gluino and lightest Higgs discovery at the

LHC remain highly encouraging. While in this work we have used the CMSSM as particle

physics model, our formalism and scanning technique can be readily applied to a wider

class of models with several free parameters.
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1. Introduction

Experiments at the Large Hadron Collider (LHC) will soon start testing many frameworks

of particle physics beyond the Standard Model (SM). Particular attention will be given to

the Minimal Supersymmetric SM (MSSM) and other effective low-energy models involving

softly-broken supersymmetry (SUSY) which remain by far the most theoretically developed

and popular schemes. On another front, dark matter (DM) experiments have by now
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reached the level of sensitivity that would allow them to detect a signal from DM if it is

made up of the lightest neutralino, whose abundance as cold dark matter (CDM) is now very

well constrained thanks to WMAP and other cosmic microwave background observations.

With enough effort, Tevatron experiments may be able to improve the final LEP limit on

the SM-like Higgs boson, and perhaps even detect it. Heavy quark experiments continue

improving constraints on allowed contributions from “new physics” (be it SUSY or some

other framework) to several observables related to flavor. Finally, an apparent discrepancy,

at the level of about 3σ, between experiment and SM predictions (based on e+e− data) for

the anomalous magnetic moment of the muon, has now persisted for several years.

In light of the expected vast improvement in the constraining power of data from

the LHC and DM searches, it is essential to develop a solid formalism to allow one to

fully explore properties of popular low-energy SUSY and other models, and to reliably

derive ensuing experimental implications. Until a few years ago, a somewhat oversimplified

approach based on fixed-grid scans of subsets of parameter space was sufficient. Such scans

imposed observational constraints on the grid in a rigid “in-or-out” fashion (e.g., points

outside some arbitrary 1 or 2σ experimental range of a given observable were discarded),

without paying attention to the varying degree with which points could reproduce the

data. The points on the grid surviving all the constraints were then used to qualitatively

evaluate the impact of thus applied data and ensuing predictions for various observables.

A major drawback of the approach was, however, that it did not allow for a probabilistic

interpretation of results. A step in the right direction was to employ a chi-square analysis

where, for example, the question of more properly weighting experimental errors could be

addressed [1 – 3]. However, the approach remains of limited use as it does not allow one to

perform a full scan over all relevant parameters. A major improvement in this direction has

been provided by employing a Markov Chain Monte Carlo (MCMC) algorithm [4], linked

with Bayesian statistics [5, 6].

Bayesian methods coupled with MCMC technology are superior in many respects

to traditional, frequentist grid scans of the parameter space. (For an introduction, see,

e.g., [7, 8].) For a start, they are much more efficient, in that the computational effort

required to explore a parameter space of dimension N scales roughly proportionally with

N . In contrast, on a grid scan with k points per dimension, the number of likelihood

evaluations required goes as kN , hence this approach becomes computationally prohibitive

even for parameter space of moderate dimensionality. Secondly, the Bayesian approach

allows one to easily incorporate into the final inference all relevant sources of uncertainty.

For a given SUSY model one can include relevant SM (nuisance) parameters and their

associated experimental errors, with the uncertainties automatically propagated to give

the final uncertainty on the SUSY parameters of interest. In addition, theoretical uncer-

tainties can be easily included in the likelihood (see [6]). Thirdly, another key advantage

is the possibility to marginalize (i.e., integrate over) additional (“hidden”) dimensions in

the parameter space of interest with very little computational effort. By “hidden dimen-

sions” we mean here the parameters others than the ones being plotted, for example in 1

dimensional or 2 dimensional plots. In this paper, we upgrade our scanning technique to a

much more efficient algorithm called “MultiNest” [9], which reduces very significantly the

computational burden of a full exploration of the parameter space.
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These advantages are built into the Bayesian procedure. The latter also requires the

specification of a prior probability distribution function (or simply prior), describing our

state of knowledge about the problem before we see the data. One of the main aims of this

study is to assess the influence of prior choice on the statistical conclusions on CMSSM

parameters. A number of recent studies have investigated the impact of several choices of

priors on the parameter inference [4 – 6, 10 – 19] in the context of the Constrained Minimal

Supersymmetric Standard Model (CMSSM) [20], and found it to be rather strong. The

CMSSM, because of its relative simplicity, is a model of much interest.

The goal of the paper is twofold. On one side we address the question of the origin

of the strong prior dependence. First, we point out and examine the impact on SUSY

parameter inference stemming from the highly non-linear nature of the mapping from the

CMSSM parameters to the observable quantities. Next, we adopt two different priors (flat

on a linear scale and flat on a log scale, see below). Within each we explore in detail, and

compare, the impact of several observables which have been known to play a major role

in constraining the CMSSM parameter space, including LEP bounds on Higgs properties,

BR(B → Xsγ), the relic abundance Ωχh
2 of the lightest neutralino assumed to constitute

the CDM in the Universe, and the anomalous magnetic moment of the muon (g−2)µ. It is

the last observable that we find plays a singular role in favoring lower values of superparners,

in some tension with some other observables, especially BR(B → Xsγ) which favors larger

scalar masses [12].

The other major aim of our paper is to compare the Bayesian posterior probability

distribution with the statistical measure of a profile likelihood in the context of prior

dependence. We conclude that the profile likelihood may provide a more robust assessment

of the favored regions of CMSSM parameters with respect to volume effects generated by the

prior choice. The coverage properties of this measure will be studied elsewhere. We focus

here on the CMSSM which we treat as a case study. The problem of prior dependence is

likely to be even more severe for more complicated SUSY models given present constraints,

although better data such as, e.g., sparticle and Higgs detection at LHC are expected to

cure it.

The paper is organized as follows. In section 2 we review the statistical formalism

used in this work. In section 3 we focus on the CMSSM and introduce our experimental

constraints, before exploring in section 4 the impact of priors and observables on inferences

on the SUSY parameter space. In section 5 we examine in more detail the consistency of

the various observational constraints and focus in particular on the tension between (g−2)µ
and BR(B → Xsγ). We also quantify the information content (i.e., the constraining power)

of each observable. Implications of parameter inferences on gluino and light Higgs searches

at the LHC and on direct detection searches of DM are outlined in section 6, and our

conclusions are presented in section 7. In appendix A we give a brief description of the

MultiNest algorithm.
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2. Statistical formalism

2.1 Statistical framework

Let us denote a set of parameters of a model under consideration by θ, and by ψ all other

relevant parameters (so-called nuisance parameters). Both sets form our basis parameters

m = (θ, ψ). (2.1)

The cornerstone of Bayesian inference is provided by Bayes’ theorem, which reads

p(m|d) =
p(d|ξ)π(m)

p(d)
. (2.2)

The quantity p(m|d) on the l.h.s. of eq. (2.2) is called a posterior probability density function

(posterior pdf, or simply a posterior). On the r.h.s. ξ denotes a set of observables, while,

the quantity p(d|ξ), taken as a function of ξ for fixed data d, is called the likelihood (where

the dependence ξ(m) is understood). The likelihood supplies the information provided

by the data. In the case of the CMSSM which we will consider below, it is constructed

in section 3.1 of ref. [6]. The quantity π(m) denotes a prior probability density function

(prior pdf, or simply a prior) which encodes our state of knowledge about the values of the

parameters in m before we see the data. The prior state of knowledge is then updated to the

posterior via the likelihood. Much care must be exercised in assessing the impact of priors

on the final inference on the model’s properties. If the posterior strongly depends on the

choice of priors, then this is a signal that the available data is not sufficiently constraining to

override the prior, and hence the information content of the posterior is strongly influenced

by the choice of the prior. Therefore judgement must be suspended until more constraining

data becomes available, unless there is a physically strong motivation for a specific choice

of priors. (For example, in some simple situations the prior follows from considerations of

the invariance properties of the problem.)

Finally, the quantity in the denominator is called evidence or model likelihood. If one is

interested in constraining the model’s parameters, the evidence is merely a normalization

constant, independent of m, and can therefore be dropped. However, the evidence is very

useful in the context of Bayesian model comparison (see e.g. [21]) but in this work we will

use it instead to quantify the constraining power of each observable. The evidence is a multi-

dimensional integral over the model’s parameter space m (including nuisance parameters),1

p(d) =

∫

p(d|ξ)π(m)dm. (2.3)

1More precisely, one should write for the evidence p(d|model), in order to show explicitly that it is

conditional on the assumption that the model is the true theory. From there one can further employ Bayes’

theorem to obtain the posterior probability for the model’s parameters given the observed data, namely

p(model|d). This is the subject of Bayesian model comparison (see e.g. [21] for an illustration). Here we

do not employ the evidence for this purpose (see instead [10, 16] for applications to the CMSSM), and

therefore drop the explicit conditioning on the model under study, although in the following one should

always interpret p(d) ≡ p(d|model).
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In our previous work [6, 11 – 14], we employed an MCMC algorithm to map out the

posterior pdf via eq. (2.2). As extensively described in [6], the purpose of the MCMC

algorithm is to construct a sequence of points in parameter space (called “a chain”), whose

density is proportional to the posterior pdf. The sequence of points thus obtained gives

a series of samples from the posterior, which are weighted in such a way as to reflect the

relative probability of the various regions in parameter space.

In this work we upgrade our scanning technique to use a novel algorithm, MultiNest [9],

which is based on the framework of Nested Sampling, recently invented by Skilling [22].

MultiNest has been developed in such a way as to be an extremely efficient sampler even

for likelihood functions defined over a parameter space of large dimensionality with a

very complex structure. This aspect is very important for multi-parameter models. For

example, previous MCMC scans have revealed that the 8-dimensional likelihood surface

of the CMSSM can be very fragmented, and that it features many finely tuned regions

that are difficult to explore with conventional MCMC and grid scans. Therefore we adopt

MultiNest as an efficient sampler of the posterior. We have compared the results with our

MCMC algorithm and found that they are identical (up to numerical noise). The main

motivation is the increased sampling efficiency (which improves computational efficiency

by a factor of ∼ 200 with respect to our previous MCMC algorithm) and the possibility

of computing automatically the Bayesian evidence, which we use in this work to quantify

the amount of information in the various observables.2 We give a brief description of the

MultiNest algorithm in appendix A.

2.2 Statistical measures

Once a sequence of M samples drawn from the posterior, m(t) (t = 0, 1, . . . ,M − 1), is

available, it becomes a trivial task to obtain Monte Carlo estimates of expectations for any

function of the parameters. For example, the posterior mean is given by

〈m〉 =

∫

p(m|d)mdm ≈ 1

M

M−1
∑

t=0

m(t), (2.4)

where 〈·〉 denotes the expectation value with respect to the posterior and the equality with

the mean of the samples follows because the samples m(t) are generated from the posterior

by construction. In general, one can easily obtain the expectation value of any function of

the parameters f(m) as

〈f(m)〉 ≈ 1

M

M−1
∑

t=0

f(m(t)). (2.5)

It is usually interesting to summarize the results of the inference by giving the 1-dimensional

marginal probability for mj , the j-th element of m. Taking without loss of generality j = 1

2A new version of our code, including MultiNest and a new interactive plotting routine (called

SuperEGO), is publicly available from www.superbayes.org. The full lists of samples used in

this work are also available at the same location. An online plotting tool is available at

http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/superbayes/index.php.
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and a parameter space of dimensionality N , the marginal posterior for parameter m1 is

given by

p(m1|d) =

∫

p(m|d)dm2 . . . dmN . (2.6)

From the samples it is trivial to obtain the marginal posterior on the l.h.s. of eq. (2.6): since

the samples are drawn from the full posterior, p(m|d), their density reflects the value of

the full posterior pdf. It is then sufficient to divide the range of m1 into a series of bins and

count the number of samples falling within each bin, simply ignoring the coordinates values

m2, . . . ,mN . A 2-dimensional posterior is defined in an analogous fashion. A 1D 2-tail α%

credible region is given by the interval (for the parameter of interest) within which fall α%

of the samples, obtained in such a way that a fraction (1− α)/2 of the samples lie outside

the interval on either side. In the case of a 1-tail upper (lower) limit, we report the value

of the quantity below (above) which α% of the sample are to be found.

An alternative statistical measure to the marginal posterior given by (2.6) is the profile

likelihood, defined, say, for the parameter m1 as

L(m1) ≡ max
m2,...,mN

L(d|m), (2.7)

where in our case L(d|m) is the full likelihood function. Thus in the profile likelihood one

maximises the value of the likelihood along the hidden dimensions, rather than integrating

it out as in the marginal posterior. The profile likelihood is obtained from the samples by

maximising the value of the likelihood in each bin, and it has been recently investigated

in the context of MCMC scans of the CMSSM in [18]. The advantage is that the profile

likelihood is clearly independent of the prior. However, its numerical evaluation in a high-

dimensional parameter space is in general very difficult, especially when finely tuned regions

are present where the likelihood is large but whose volume is very small (for a given metric).

For example, a log prior on the SUSY masses will expand the volume of the low-mass

parameter region and as a consequence the algorithm will explore it in much finer detail

than it would be possible with a linear prior on the masses. This might find points in

parameter space that are good fits to the data and that would have otherwise been missed

by a scan performed using a linear prior. This will be true of any scanning algorithm:

scanning in one metric (in our language, for a given prior) might in general give a different

value for the profile likelihood than the numerical evaluation of the same quantity when

scanning in another metric. To the extent that the different numerical evaluations of the

same quantity disagree, one must of course take with a grain of salt either value.3 As we

shall demonstrate below, the choice of priors influences the numerical efficiency with which

different regions of parameter space are scanned. Therefore the numerical evaluation of

the profile likelihood might in general be different for different prior (i.e., metric) choices.

In the following, when we refer to the profile likelihood in connection with the scanning

results, we always mean “our numerical evaluation of the profile likelihood”.

3Notice that this is fundamentally different from the Bayesian perspective: a change of prior changes

the posterior in Bayesian statistics, hence the mathematical function one wants to map out changes inde-

pendently on the numerical aspects of the scanning technique.
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The profile likelihood can be directly interpreted as a likelihood function, except of

course that it does account for the effect of the hidden parameters. Therefore one can think

of plots of the profile likelihood as analogous to what would be obtained by performing a

more traditional fixed-grid scan in 8-dimensions, computing the chi-square at each point

at then plotting the value maximised along the hidden dimensions. We report confidence

intervals from the profile likelihood obtained via the usual likelihood ratio test as follows.

Starting from the best-fit value in parameter space, an α% confidence interval encloses all

parameter values for which minus twice the log-likelihood increases less than ∆χ2(α, n)

from the best fit value. The threshold value depends on α and on the number n of pa-

rameters one is simultaneously considering (usually n = 1 or n = 2), and it is obtained

by solving

α =

∫ ∆χ2

0
χ2

n(x)dx, (2.8)

where χ2
n(x) is the chi-square distribution for n degrees of freedom. The MultiNest al-

gorithm we employ is much more efficient than a standard grid scan in parameter space,

and it allows one to explore the full multi-dimensional parameter space at once. There-

fore our scanning algorithm when coupled with the profile likelihood can be understood as

an extremely efficient shortcut for the evaluation of the minimum chi-square in a multi-

dimensional parameter space. However, the MultiNest technique (or indeed, any other

Bayesian procedure) is not particularly optimized to look for isolated points with large

likelihood in the parameter space. This means that the profile likelihood is derived from

a necessarily sparse sampling of our 8-dimensional parameter space, and it might well be

that regions with large likelihood that occupy a very small volume in parameter space

are missed altogether. An analogous problem would appear if the scan was done with a

traditional grid technique, which would find multiple maxima in the likelihood if executed

in 8-dimensional parameter space (grid scans to date have never been able to deal with

sufficient resolution with such a high dimensional parameter space). Nevertheless, Bayesian

technology and the MultiNest algorithm give several orders of magnitude improvement in

the efficiency of the scan, thereby allowing for the first time to undertake a detailed anal-

ysis of the impact of the data when applied one by one or simultaneously to the whole

parameter space.

As an alternative measure to the posterior, in our previous work we employed a quan-

tity that we called the mean quality of fit (see eq. (3.1) in [12]), which is defined as the

average (over the posterior) of the chi-square. Therefore the difference between the profile

likelihood and the mean quality of fit is that in the mean quality of fit the chi-square is aver-

aged over the hidden dimensions, while in the profile likelihood it is maximised. Numerical

investigation shows that the two quantities are very similar in the case of the CMSSM.

We have chosen to adopt in this work the profile likelihood because of its more straight-

forward statistical interpretation, but we point out that our previous findings showing the

mean quality of fit are very similar to what one would have obtained using the profile

likelihood instead.

In Bayesian statistics, the posterior pdf encodes the full information coming from
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the data and the prior. Ideally, the information in the data is much stronger than the

information in the prior, so effectively the posterior should be dominated by the likelihood

function and the prior choice ought to be irrelevant (see figure 2 in [7] for an illustration).

Furthermore, in this case it is easy to show that the Bayesian posterior, the profile likelihood

and the mean quality of fit all become identical, and therefore the conclusions from the

different statistical measures agree (and are uncontroversial). If the data are not strong

enough, the different statistical quantities encode different pieces of information about the

parameters and may in general disagree, and the prior influence might come to dominate the

result. This appears to be the case with the CMSSM with currently available constraints.

One of the main aims of this work is to clarify the reasons for this prior and statistical

measure dependence, and to assess how much one should be worried about it.

2.3 Information content and constraining power

The Bayesian evidence returned by the MultiNest algorithm can be employed in several

ways, mainly as a tool for model comparison (see, e.g. [7]). Here we employ it to quantify

the amount of information (i.e., the constraining power) of the different observables. This

is encoded in the Kullback-Leibler (KL) divergence between the prior and the posterior [23].

For ease of notation, let us denote the posterior pdf by p and the prior by π, as before.

Then the KL divergence is defined as

DKL(p, π) ≡
∫

p(m|d) ln
p(m|d)
π(m)

dm. (2.9)

In virtue of Bayes’ theorem the KL divergence becomes the sum of the negative log evidence

and the expectation value of the log-likelihood under the posterior:

DKL(p, π) = − ln p(d) +

∫

p(m|d) lnL(m)dm = − ln p(d) − 〈χ2/2〉. (2.10)

The first quantity on the r.h.s. is returned by the MultiNest algorithm, while computing

the expectation value of the log-likelihood (i.e., the average chi-square) is trivial from the

samples. It is sufficient to average the chi-square over the samples.

To gain a feeling for what the KL divergence expresses, let us compute it for a 1-

dimensional case, with a Gaussian prior around 0 of variance Σ2 and a Gaussian likelihood

centered on mmax and variance σ2. We obtain after a short calculation

DKL(p, π) = −1

2
− ln

σ

Σ
+

1

2

[

(

σ

Σ

)2 (

mmax
2

σ2
− 1

)

]

. (2.11)

The second term on the r.h.s. gives the reduction in parameter space volume in going from

the prior to the posterior. For informative data, σ/Σ ≪ 1, this terms is positive and grows

as the logarithm of the volume ratio. On the other hand, in the same regime the third term

is small unless the maximum likelihood estimate is many standard deviations away from

what we expected under the prior, i.e. for mmax/σ ≫ 1. This means that the maximum

likelihood value is “surprising”, in that it is far from what our prior led us to expect.

– 8 –
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Therefore we can see that the KL divergence is a summary of the amount of information,

or “surprise”, contained in the data.

Other quantities can be used to assess the constraining power of the data (see e.g. [15]

for a recent application), but the KL divergence has the advantage of being firmly grounded

in information theory and of having a clear interpretation.

3. Implications for the Constrained MSSM

As a theoretical particle physics framework to illustrate our procedure we use the popular

Constrained MSSM [20]. Some of us have examined the model in the context of Bayesian

statistics before [6, 16, 11, 12]. Here we summarize its relevant features here for complete-

ness. Below we also list, and update, where applicable, the experimental constraints on

the model.

3.1 The Constrained MSSM

In the CMSSM the parameters m1/2, m0 and A0, which are specified at the GUT scale

MGUT ≃ 2 × 1016 GeV, serve as boundary conditions for evolving, for a fixed value of

tan β, the MSSM Renormalization Group Equations (RGEs) down to a low energy scale

MSUSY ≡ √
met1

met2
(wheremet1,et2

denote the masses of the scalar partners of the top quark),

chosen so as to minimize higher order loop corrections. At MSUSY the (1-loop corrected)

conditions of electroweak symmetry breaking (EWSB) are imposed and the SUSY spectrum

is computed.

Our aim is to use experimental constraints on observational quantities defined in terms

of CMSSM parameters to infer the most probable values of the CMSSM quantities them-

selves (and the associated errors). In this paper with fix the sign of µ to be positive,

in order for the model to accommodate the apparent discrepancy of the anomalous mag-

netic moment of the muon between experiment and SM predictions. We then denote the

remaining four free CMSSM parameters by the set

θ = (m0,m1/2, A0, tan β). (3.1)

As originally demonstrated in [5, 6], the values of the relevant SM parameters can strongly

influence some of the CMSSM predictions, and, in contrast to common practice, should

not be simply kept fixed at their central values. We thus introduce a set ψ of so-called

“nuisance parameters”, namely the SM parameters which are relevant to our analysis,

ψ = (Mt,mb(mb)
MS , αem(MZ)MS , αs(MZ)MS), (3.2)

where Mt is the pole top quark mass. The other three parameters: mb(mb)
MS , the bottom

quark mass evaluated at mb, αem(MZ)MS and αs(MZ)MS — respectively the electro-

magnetic and the strong coupling constants evaluated at the Z pole mass MZ — are all

computed in the MS scheme.

The set of parameters θ and ψ form an 8-dimensional set m of our “basis parame-

ters” (2.1). In terms of the basis parameters we compute a number of collider and cosmo-

logical observables, which we call “derived variables” and which we collectively denote by
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SM (nuisance) Mean value Uncertainty Ref.

parameter µ σ (exper.)

Mt 172.6 GeV 1.4 GeV [24]

mb(mb)
MS 4.20 GeV 0.07 GeV [25]

αs(MZ)MS 0.1176 0.002 [25]

1/αem(MZ)MS 127.955 0.03 [26]

Table 1: Experimental mean µ and standard deviation σ adopted for the likelihood function for

SM (nuisance) parameters, assumed to be described by a Gaussian distribution.

the set ξ = (ξ1, ξ2, . . .). The observables will be used to compare CMSSM predictions with

a set of experimental data d, which is available either in the form of positive measurements

or as limits, as discussed below.

3.2 Priors, observables and data

In order to estimate the impact of priors, we adopt two different choices of priors:

• flat priors in all the CMSSM parameters m1/2, m0, A0 and tan β;

• log priors, that are flat in logm1/2 and logm0, while for the other two CMSSM

parameters we keep flat priors.

As regards the ranges, in both cases we take 50 GeV < m1/2,m0 < 4 TeV, |A0| <
7 TeV and 2 < tan β < 62, as before [6, 11, 12]. Note that the above range of m0 includes

the hyperbolic branch/focus point (FP) region [27, 28] which will play an important role in

our discussion because it is currently favored by the constraint from BR(B → Xsγ) [12].

The rationale for our choice of priors is that they are distinctively different. In par-

ticular, the log prior gives equal a priori weights to all decades for the parameter. For

example, with a log prior there is the same a priori probability that m0 be in the range

10 GeV < m0 < 100 GeV as in the range 100 GeV < m0 < 1 TeV. In contrast, with a flat

prior, the latter range of mass values has instead 10 times more a priori probability than

the former. So the log prior expands the low-mass region and allows a much more refined

scan in the parameter space region where finely tuned points can give a good fit to the

data (see below). The reason why we apply different priors to m1/2 and m0 only is that

both of them play a dominant role in the determination of the masses of the superpartners

and Higgs bosons in the CMSSM.

Clearly a flat prior on a parameter set m does not correspond to a flat prior on some

non-linear function of it, F(m).The two priors are related by

π(F) = π(m)






dm

dF





. (3.3)

Thus, in the case of non-linear dependence of F(m) the term |dm/dF| implies that an

uninformative (flat) prior on m may be strongly informative about (i.e., constraining) F .

(In a multi-dimensional case, the derivative term is replaced by the determinant of the
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Jacobian for the transformation.) It follows that a flat prior on logm (i.e., the log prior)

corresponds to choosing a prior on m of the form π(m) ∝ m−1. Therefore we expect that

the choice of the log prior will give more statistical weight to lower values of m1/2 and m0

than in the case of flat priors.

Other choices of priors are possible, and indeed might be argued to be more theoret-

ically motivated from the point of view of penalizing finely tuned regions of parameters

space [17 – 19]. However, one would like the final inference to be as prior independent as

possible, and the constraints to be driven by the likelihood, rather than by theoretical

prejudices in the prior.

A related, although different issue is the choice of the parameters with which to define

the model. One particularly well-known implementation of the CMSSM is one version

of the so-called minimal supergravity model [29] where the parameters tan β and mZ are

replaced by µ and B. This choice of parameterization has been advocated in [18, 19] as

more “fundamental”. This is questionable in the case of the CMSSM which has originally

been defined in ref. [20] in terms of the parameters (3.1) as an effective theory, without

necessarily any reference to any underlying supergravity theory. More importantly, it

is obvious that robust physical conclusions should not strongly depend on one choice of

parameters of the model or another. If they do, this should serve as a warning bell that

the derived statistical implications for observable quantities, like masses and cross sections,

are not robust, in the same way as is the case with the dependence on priors. (Note that

the impact of the same type of priors, e.g., flat, for different choice of parameterization,

may be very different, as implied by eq. (3.3).)

For the SM parameters we assume flat priors over relatively wide ranges: 167.0 GeV ≤
Mt ≤ 178.2 GeV, 3.92 GeV ≤ mb(mb)

MS ≤ 4.48 GeV, 127.835 ≤ 1/αem(MZ)MS ≤
128.075 and 0.1096 ≤ αs(MZ)MS ≤ 0.1256. This is expected to be irrelevant for the

outcome of the analysis since the nuisance parameters are well-constrained by the data,

as can be seen in table 1, where for each of the SM parameters we adopt a Gaussian like-

lihood with mean µ and experimental standard deviation σ. Note that, with respect to

refs. [11, 12], we have updated the value of Mt.

The experimental values of the collider and cosmological observables that we apply (our

derived variables) are listed in table 2, with updates relative to [12] where applicable. In

our treatment of the radiative corrections to the electroweak observables MW and sin2 θeff ,

starting from ref. [11] we include full two-loop and known higher order SM corrections as

computed in ref. [37], as well as gluonic two-loop MSSM corrections obtained in [38]. We

further update an experimental constraint from the anomalous magnetic moment of the

muon (g − 2)µ for which a discrepancy (denoted by δaSUSY
µ ) between measurement and

SM predictions (based on e+e− data) persists at the level of 3.2σ [31].4 We will show that

while this constraint on its own quite strongly prefers lower values of m0 and m1/2, this is

in contradiction with the impact of most other observables. Once they are also included,

this preference essentially disappears.

4Evaluations done by different groups using e+e− data give slighly different values but they all remain

close to the value given in table 2. On the other hand, using τ data leads to a much better agreement with

experiment, δaSUSY
µ = (8.9 ± 9.5) × 10−10 [39].
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Observable Mean value Uncertainties ref.

µ σ (exper.) τ (theor.)

MW 80.398 GeV 25 MeV 15 MeV [30]

sin2 θeff 0.23153 16 × 10−5 15 × 10−5 [30]

δaSUSY
µ × 1010 29.5 8.8 1.0 [31]

BR(B → Xsγ) × 104 3.55 0.26 0.21 [32]

∆MBs 17.77 ps−1 0.12 ps−1 2.4 ps−1 [33]

BR(Bu → τν) × 104 1.32 0.49 0.38 [32]

Ωχh
2 0.1099 0.0062 0.1Ωχh

2 [34]

Limit (95% CL) τ (theor.) ref.

BR(Bs → µ+µ−) < 5.8 × 10−8 14% [35]

mh > 114.4 GeV (SM-like Higgs) 3 GeV [36]

ζ2
h f(mh) (see text) negligible [36]

mq̃ > 375 GeV 5% [25]

mg̃ > 289 GeV 5% [25]

other sparticle masses As in table 4 of ref. [6].

Table 2: Summary of the observables used in the analysis. Upper part: Observables for which a

positive measurement has been made. δaSUSY
µ = aexpt

µ − aSM
µ denotes the discrepancy between the

experimental value and the SM prediction of the anomalous magnetic moment of the muon (g−2)µ.

As explained in the text, for each quantity we use a likelihood function with mean µ and standard

deviation s =
√
σ2 + τ2, where σ is the experimental uncertainty and τ represents our estimate

of the theoretical uncertainty. Lower part: Observables for which only limits currently exist. The

likelihood function is given in ref. [6], including in particular a smearing out of experimental errors

and limits to include an appropriate theoretical uncertainty in the observables. mh stands for the

light Higgs mass while ζ2
h ≡ g2(hZZ)MSSM/g

2(hZZ)SM, where g stands for the Higgs coupling to

the Z and W gauge boson pairs.

As regards BR(B → Xsγ), with the central values of SM input parameters as given in

table 1, for the new SM prediction we obtain the value of (3.12±0.21)×10−4 .5 We compute

SUSY contribution to BR(B → Xsγ) following the procedure outlined in refs. [42, 43] which

was extended in refs. [44, 45] to the case of general flavor mixing. In addition to full leading

order corrections, we include large tanβ-enhanced terms arising from corrections coming

from beyond the leading order and further include (subdominant) electroweak corrections.

The parametric uncertainty involved in the computation of BR(Bu → τν) comes from

using |Vub| = (4.34 ± 0.38) × 10−3 [32] obtained from inclusive semileptonic B decays

through the central value of mb(mb)
MS . For τB we use 1.643 ± 0.01 ps [32] and fb =

0.216±0.022 GeV [46], and obtain BR(Bu → τν)SM = 1.56±0.38×10−4. For the B̄s−Bs

oscillations we use the SM parametric uncertainty given by the global fit from the UTfit

collaboration [47].

5The value of (3.15 ± 0.23) × 10−4 originally derived in ref. [40, 41] was obtained for slightly different

values of Mt and αs(MZ)MS. Note that, in treating the error bar we have explicitly taken into account

the dependence on Mt and αs(MZ)MS , which in our approach are treated parametrically. This has led to

a slight reduction of its value.
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Regarding cosmological constraints, we use the determination of the relic abundance of

cold DM based on the 5-year data from WMAP [34] to constrain the relic abundance Ωχh
2

of the lightest neutralino. In order to be conservative, we employ the constraint reported in

table 1 of ref. [34] (mean value), obtained using WMAP data alone. The relic abundance

(assuming the neutralino is the sole constituent of dark matter) is computed with high

precision, including all resonance and coannihilation effects, through MicrOMEGAs [48],

adding a 10% theoretical error in order to remain conservative. Note that our estimated

theoretical uncertainty is of the same order as the uncertainty from current cosmological

determinations of ΩCDMh
2.

We further include in our likelihood function an improved 95% CL limit on BR(Bs →
µ+µ−) and a recent value of B̄s − Bs mixing, ∆MBs , which has recently been precisely

measured at the Tevatron by the CDF Collaboration [33]. In both cases we use expressions

from ref. [45] which include dominant large tan β-enhanced beyond-LO SUSY contributions

from Higgs penguin diagrams. Unfortunately, theoretical uncertainties, especially in lattice

evaluations of fBs are still substantial (as reflected in table 2 in the estimated theoretical

error for ∆MBs), which makes the impact of this precise measurement on constraining the

CMSSM parameter space rather limited.6

For the quantities for which positive measurements have been made (as listed in the

upper part of table 2), we assume a Gaussian likelihood function with a variance given

by the sum of the theoretical and experimental variances, as motivated by eq. (3.3) in

ref. [6]. For the observables for which only lower or upper limits are available (as listed

in the bottom part of table 2) we use a smoothed-out version of the likelihood function

that accounts for the theoretical error in the computation of the observable, see eq. (3.5)

and figure 1 in ref. [6]. In particular, in applying a lower mass bound from LEP-II on the

Higgs boson h0 we take into account its dependence on its coupling to the Z boson pairs

ζ2
h, as described in detail in ref. [11]. When ζ2

h ≃ 1, the LEP-II lower bound of 114.4 GeV

(95% CL) [36] applies. For arbitrary values of ζh, we apply the LEP-II 95% CL bounds on

mh andmA, which we translate into the corresponding 95% CL bound in the (mh, ζ
2
h) plane.

We then add a conservative theoretical uncertainty τ(mh) = 3 GeV, following eq. (3.5) in

ref. [6]. We will see that employing the full likelihood function in the (mh, ζ
2
h) plane will

allow us to discover some regions that evade the 114.4 GeV lower bound, and which would

not have been seen in a scan that would have simply cut off all the points below the limit.

Finally, points that do not fulfil the conditions of radiative EWSB and/or give non-

physical (tachyonic) solutions are discarded.

4. Effect of priors and of different observables

We now turn to the discussion of the effects of priors and experimental observables on the

CMSSM parameter inference using Bayesian statistics and profile likelihood. We begin

with some general remarks.

6On the other hand, in the MSSM with general flavor mixing, even with the current theoretical uncer-

tainties, the bound from ∆MBs
is in many cases much more constraining than from other rare processes [49].
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Shortcut Observables included in data set

PHYS Physicality constraints (no tachyons, EWSB, neutralino LSP)

NUIS Mt,mb(mb)
MS , αs(MZ)MS , 1/αem(MZ)MS

COLL mh and sparticle masses (limits)

CDM Ωχh
2

BSG BR(B → Xsγ)

GM2 δaSUSY
µ = aexpt

µ − aSM
µ

EWO sin2 θeff , MW

BPHYS ∆MBs , BR(Bs → µ+µ−), BR(Bu → τν)

ALL All of the above

Table 3: Shortcuts for different data combinations applied in the analysis. The actual data

employed in the numerical analysis are given in tables 1 and 2.

The choice of a prior pdf implies a certain measure on the parameter space defined

by m. For example, the log prior will give less a priori weight to larger values of m1/2

and m0, thus reducing the preference for the FP region. What is most important is that

the flat parameter space measure imposed on the basis parameter space via the choice of

priors does not correspond to a flat measure over the space of the observables quantities

ξ, since these are in general a strongly non-linear function of the chosen set of model’s

parameters. Conversely, comparing observables quantities with experimental data leads to

rather complicated implications for the basis parameters.

If the data are constraining enough, the effect of the likelihood dominates over that of

the prior and one expects the prior dependence to be negligible in the final inference (based

on the posterior pdf). Below we examine to what extent this is the case in the CMSSM.

We note that the CMSSM is one of the most economical phenomenological models on the

table — more complex models (with more free parameters) are qualitatively expected to

compound the problem, given that, as we will show below, current constraints are not

sufficiently strong to allow drawing prior-independent conclusions.

As regards experimental observables, since we will be interested in comparing the

constraining power of different combinations of data, it is convenient to use shortcuts to

designate them in shorthand. Those are given in table 3.

4.1 Impact of priors

In this subsection we explore the impact of the flat and the log priors on the CMSSM

parameters and on the predictions for the observable quantities. To set the stage, we per-

form a scan of the basis parameter space without imposing any experimental constraints

at all, i.e., we take a constant likelihood function. We only discard points suffering from

unphysicalities: no self-consistent solutions to the RGEs, no EWSB and tachyonic states.

Furthermore, we require the neutralino to be the LSP in order to be the dark matter. There-

fore the final list of samples only contains physical points in parameter space. Without the

physicality constraint, we would have expected that such a scan would return a posterior

identical to the prior, i.e., flat in the variables over which a flat prior has been imposed.
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Figure 1: A scan including no experimental data, but only the requirement of physicality (PHYS).

Two columns of panels on the left: 1D posterior distribution (dashed blue) and 1D profile likelihood

(solid red) for the CMSSM parameters for the flat priors case. Two columns of panels on the right:

the same quantities but for the log priors case. The plots reflect the prior distributions alone of the

CMSSM parameters and the physicality constraints.

In figure 1 we present the implication for 1D distributions of the posterior (dashed blue)

and the profile likelihood (solid red) for the CMSSM parameters with only the physicality

constraint imposed (PHYS). In the four leftmost panels we assume flat priors while in the

four rightmost panels we assume log priors. (For all the SM nuisance parameters both

distributions are basically flat over the prior range of the SM parameters, and we do not

show them here.) Notice that the lack of samples in certain regions of parameter space,

as induced by the physicality constraints, shows up in the posterior pdf as a reduction

of the marginalised probability for that region. Thus for the flat priors case, the drop at

low m0 and large m1/2 is primarily caused by the fact that in that region the LSP is the

stau and hence our assumed requirements for physical points are not met. On the other

hand, a gradual decrease in the posterior of tanβ is a reflection of increasing difficulty

for the RGEs to find self-consistent solutions. Eventually, at large tan β over about 62,

the Yukawa coupling of the top quark grows to non-perturbative values before the GUT

scale is reached and no solutions are found anymore, as was explained in [6]. For the

log priors case, the increased a priori probability for small values of m0 compensates the

above effects, while the large m0 region is now suppressed. The same trend is even more

evident for m1/2, where the marginal posterior pdf follows closely the expected dependence

∝ 1/m1/2 characteristic of a log prior. In contrast, the profile likelihood remains flat across

all the CMSSM parameters. This is precisely what one would have expected since no data

have been employed.

The above points can be confirmed by looking at the corresponding 2D distributions,

which are shown in figure 2. There we plot samples drawn with uniform weight from the

prior (once the physicality constraints have been imposed), hence the density of samples

reflect the prior pdf.
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Figure 2: A scan including no experimental data, but only the requirement of physicality (PHYS),

for flat priors (panels in the left two columns) and log priors (panels in the right two columns).

Samples are drawn with equal weight from the prior, hence their density reflects 2D probability for

different projections on the CMSSM parameters.

It is interesting to consider the implied distribution for the observable quantities. This

can be understood as a predictive distribution from the priors and the physicality con-

straints for the observables. In figure 3 we present the 1D distributions of the posterior

(dashed blue) and the profile likelihood (solid red) for the quantities which will play the

most important role in constraining base parameters. For comparison, for each observable

we also display the likelihood function (dotted black), which however has not been imposed

in this scan. The two left (right) columns are for the flat (log) prior.

Starting from the CDM abundance, we note that, in the absence of constraints from

the data, for both choices of priors, the neutralino relic density is typically much larger

than unity, as is well known. When we later impose the WMAP constraint (see below),

we will therefore expect that the posterior will be dominated by the likelihood, since the

prior is much wider (by orders of magnitude) than the likelihood. We also note that the

profile likelihood remains flat out to even larger values — a reflection of the fact that the

Bayesian posterior is suppressed because only a small number of samples is found with an

extremely large relic abundance (Ωχh
2 ≫ 100).
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Figure 3: A scan including no experimental data, but only the requirement of physicality (PHYS).

The posterior probability distribution (dashed blue) and the profile likelihood (solid red) for the

most constraining observables (with flat priors on the left, and log priors on the right): the DM

relic abundance Ωχh
2 of the neutralino, the excess in the anomalous magnetic moment of the muon

δaSUSY
µ , the BR(B → Xsγ) and the lightest Higgs mass mh. For comparison, the dotted black,

smooth curves give the likelihood function for the plotted observable (not imposed in this scan).

For the DM abundance, we do not plot the likelihood function for it would be extremely sharply

peaked on this plot’s scale.

On the other hand, the posterior for δaSUSY
µ is very strongly peaked around zero. This

is a consequence of the overwhelming number of samples in the FP region, where the large

superpartner masses lead to a strong suppression in the SUSY contribution to δaSUSY
µ .

Even the log prior can only give a slight extra weight to the pdf for larger values of δaSUSY
µ .

Again, the profile likelihood is unaffected by the choice of priors.

Similar reasoning can also explain the fairly strong peak in the posterior for BR(B →
Xsγ) at ∼ 3 × 10−4, below the SM central value. This is the result of the negative (for

µ > 0) chargino/stop contribution often overriding the always positive charged Higgs/top

contribution. Finally, a large concentration of samples at large m1/2 and m0 also accounts

for the fairly strongly peaked distribution in the pdf of the lightest Higgs mass mh. In

contrast, the profile likelihood is not affected by such volume effects, and remains flat,

except for small dip at mh ∼ 88 GeV, well below the LEP limit (where the scan has not

found any point satisfying the physicality constraints). This is likely to be the consequence

of the finite number of samples we could gather.

In figure 4 we plot the predictive distribution from the prior for the EW precision

observables and b-physics quantities. Notice how for both choices of priors the marginal

pdf implied by the prior (dashed blue) is typically much more strongly peaked than the

likelihood function (dotted black). This means that the constraining power of the data
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Figure 4: As in figure 3, but for some other observables. No experimental constraints have been

imposed but only the requirement of physicality (PHYS) for both flat priors (left panels) and log

priors (right panels). We plot the posterior probability distribution (dashed blue) and the profile

likelihood (solid red). For comparison, the dotted black, smooth curves give the likelihood function

for the plotted observable (not imposed in this scan). The range of the profile likelihood (solid red

line) gives the range of values for the quantities covered by the scan, as a consequence of the priors

presented in section 4.

for these quantities is expected to be smaller than the information already implied by the

prior (see section 5.2 for more details). Therefore, as we shall explicitely show below, the

impact of including them in the likelihood will be fairly limited.

To summarize, the key point is that, as we have emphasized at the beginning of this

section, in the CMSSM (and, more generally, in a class of effective SUSY models where

input parameters are defined at some high scale), the connection between the basis param-

eters and the observable quantities (other than the nuisance parameters, which obviously

are directly constrained) is highly non-linear. Therefore the data, although constraining

fairly strongly some of the observables, can only give indirect constraints on the parameters

of the model. This is because one can move them around in order to satisfy a given con-

straint. Therefore plotting the posterior for the obervables in the absence of data gives the

amount by which the prior measure impacts on the observable quantities. Another way

of interpreting the above behavior is as the prior-predictive distribution for the observ-

able quantities, i.e., the probability distribution for the observables implied by the choice

of priors.

4.2 Impact of collider data, CDM abundance, b → sγ and δaSUSY

µ

We now move on to adding the constraint sets from table 3 and investigate how they

influence the conclusions obtained above for the two statistical measures and for our choices

of priors.
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Figure 5: As in figure 1, but now adding the constraint on SM nuisance parameters, col-

lider limits on Higgs and superpartner masses and the WMAP5 CDM abundance determination

(PHYS+NUIS+COLL+CDM), for flat/log priors (panels in the two left/right columns). The vertical, thin

line is the posterior mean, the red cross the best-fit point. The horizontal bars on the top express

in a graphical way the constraints on the parameters: the top bar gives 68% (green) and 95% (red)

limits from the profile likelihood, while the bar below it gives 68% (green) and 95% (blue) intervals

from the marginal pdf.

First, in figure 5 we show the CMSSM parameters (as in figure 1) but now with data

on SM nuisance parameters, collider limits on Higgs and superpartner masses and the

WMAP5 CDM abundance determination added to the likelihood (PHYS+NUIS+COLL+CDM).

The corresponding 2D posterior pdf and profile likelihood for some of the CMSSM variable

combinations are shown in figure 6.

By examining both figures, it is clear that the resulting constraints on the CMSSM

parameters depend very much on the chosen statistical measure. For example, while in the

log prior case the posterior pdf shows a stronger preference for smaller m0 than with the

flat prior (and a strong peak at small m0), the profile likelihood remains essentially flat

across all CMSSM parameters for both choices of priors. This is an indication that the

data employed are not providing sufficient constraints on the parameters. More generally,

we can see that the profile likelihood gives more conservative limits than the posterior

pdf. These features can also be seen in figure 6 (2D distributions). The 95% contours are

broadly similar for both statistics for a given choice of prior, but are quite different for the

two different priors. In general, the log prior favors more strongly the low energy region.

We have also found that the chi-square of the best fit point (indicated by a cross) is lower

for the log prior scan than the flat prior scan. There are also evident differences between

the location of the best fit point and the posterior mean (indicated by a filled dot). This

results from the fact the the posterior mean is influenced by the posterior distribution and

its associated volume whose distribution depends fairly strongly on the chosen prior.
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Figure 6: Posterior pdf (left two columns) and profile likelihood (right two columns) for flat priors

(top row) and log priors (bottom row) for a scan including SM nuisance parameters constraints,

collider limits on Higgs and superpartner masses and the WMAP5 CDM abundance determination

(PHYS+NUIS+COLL+CDM). The inner and outer contours enclose respective 68% and 95% joint regions

for both statistics. The posterior pdf has been smoothed with a Gaussian kernel of 1 bin width for

display purposes. The cross gives the best-fit point, the filled circle is the posterior mean.

On the other hand, the nuisance parameters are extremely well constrained by the

Gaussian likelihood, for both the Bayesian pdf and the profile likelihood statistics. The two

statistics are almost identical for those variables and equal to the experimental likelihood,

hence we do not show them here.

Next we add the BR(B → Xsγ) constraint (PHYS+NUIS+COLL+CDM+BSG) in figures 7

(1D distribution) and 8 (2D distribution). This has the effect of moving the region pre-

ferred by the profile likelihood towards large m0 (the FP region), for both the flat and,

to a lesser extent, log prior.7 However, the posterior pdf still suffers from a strong prior

dependence, with the flat prior clearly giving more weight to larger m0, while the log prior

case strongly preferring lower m0 and, to a lesser extent, m1/2, a reflection of the larger a

priori probability given to lower ranges of both parameters. Constraints on tanβ are also

dependent on the prior and the choice of the statistical measure.

In order to examine the impact of the anomalous magnetic moment of the muon,

in figures 9 (1D distribution) and 10 (2D distribution) we replace the constraint from

7The reason why the BR(B → Xsγ) constraint favors the FP can be seen as follows. Starting from the

SM central value of 3.12× 10−4, the always positive charged Higgs/top contribution has to be large enough

so that, when combined with the negative (for µ > 0) chargino/stop contribution the total ends up around

the experimental central value of 3.55 × 10−4. This requires the charged Higgs to be light enough and

also the stop (or chargino) to be heavy enough. Both conditions are satisfied in the FP region. Of course

the above argument is somewhat oversimplified, as it does not take into account the associated error bars

on the above values but it does explain the basic mechanism, which remains dominant in a full numerical

analysis [12].
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Figure 7: As in figure 5, but with an additional constraint from BR(B → Xsγ)

(PHYS+NUIS+COLL+CDM+BSG).
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Figure 8: As in figure 6, but with an additional constraint from BR(B → Xsγ)

(PHYS+NUIS+COLL+CDM+BSG).

BR(B → Xsγ) with δaSUSY
µ (PHYS+NUIS+COLL+CDM+GM2). This has the effect of moving,

for both statistical measures, the prefered regions to lower masses, m0,m1/2 ∼< 1 TeV.

While there is some residual prior dependence in the posterior pdf, the profile likelihood

is now almost independent of the prior and the constraints on all parameters are largely

reconciled for both statistics and prior measures. This means that, in the absence of

the constraint from BR(B → Xsγ), the constraining power of the δaSUSY
µ observable is

rather strong.
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Figure 9: As in figure 5, but with an additional constraint from δaSUSY
µ , instead of BR(B → Xsγ)

(PHYS+NUIS+COLL+CDM+GM2).

However, such a strong constraint comes at the price of a tension with other observables

which have not been included in this scan, especially BR(B → Xsγ). This is shown in

figure 11 for the log prior (the case of the flat prior is qualitatively similar). As before, the

posterior pdf is shown in dashed blue, the profile likelihood in solid red and the likelihood

(data) in dotted black. The DM abundance and the δaSUSY
µ are well constrained and both

statistics are in agreement with the likelihood. But both the posterior and the profile

likelihood for BR(B → Xsγ) peak at a very low value, well below the SM value, reflecting

a sizeable negative contribution of SUSY corrections. This is in strong diagreement with

the observed likelihood. The other two b-physics observables exhibit a similar tension, as

well. Hence we expect that, once BR(B → Xsγ) and the other constraints are applied

both the pdf and the profile likelihood will shift considerably and the δaSUSY
µ constraint

will produce a tension with the other data.8 We will discuss the tension between δaSUSY
µ

and the other observables in more detail in the next section.

4.3 Combined impact of all observables

Finally, we examine the combined effect of all the constraints listed in table 3 (ALL). The

corresponding plots for the CMSSM parameters are shown in figures 12 (1D distributions)

and 13 (2D distributions). In the case of the flat prior (two leftmost columns), both

posterior pdf and profile likelihood show a clear preference for large m0 and large, but

not as much, m1/2 (the FP region), as well as a fairly narrow peak at small m0 (the stau

8An interesting oddity is the long tail of the profile likelihood for values mh ∼
< 114 GeV. This is caused

by the fact that, in that case the light Higgs coupling ζ2
h becomes suppressed, thus evading LEP limits on

the SM-like Higgs mass (and also corresponding to large values of BR(Bu → τν), well above the observed

value, which however has not been imposed in this scan). Note that this does not show up in the Bayesian

pdf, because there is only a small number of samples with non-SM-like coupling.
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Figure 10: As in figure 6, but with an additional constraint from δaSUSY
µ , instead of BR(B → Xsγ)

(PHYS+NUIS+COLL+CDM+GM2).

Figure 11: As in figure 9 (PHYS+NUIS+COLL+CDM+GM2), but for several observable quantities. Only

the log priors case is shown here, the flat prior case is qualitatively similar.

coannihilation region). Both statistical measures also appear to favor non-zero, positive

A0. On the other hand, the posterior shows a peak at large tan β ∼ 55, although at 95%

confidence both the posterior and especially the profile likelihood allow a wide spread of

values, down to small values of about 10 (where the profile likelihood shows another peak),

and even less. Turning next to the log prior (two rightmost columns), the posterior for

m0 is now more strongly peaked at small values while the probability for larger values is
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suppressed (again as expected from a log prior). In contrast, the profile likelihood continues

to indicate a preference for large m0 ∼> 1 TeV, in the FP region. On the other hand, the

prefered ranges of m1/2 have for both statistical measured moved towards smaller values,

as expected from the log prior, although the profile likelihood is qualitatively similar to

the flat prior case. In contrast, the distributions for A0 have not changed dramatically,

while the bi-modality in the ones for tanβ is somewhat stronger and shows preference for

lower values. We remind the reader that, for both choices of priors, we have used flat

distributions in both A0 and tan β.

It is clear that figures 12 and 13 are qualitatively similar to figures 7 and 8 (which show

the impact of including BR(B → Xsγ) but not δaSUSY
µ ), and significantly different from

figures 9 and 10 (which show the impact of including δaSUSY
µ but not BR(B → Xsγ)). This

is yet another reflection of the strong tension between δaSUSY
µ and the other constraints,

mostly BR(B → Xsγ), which at the end override to a large extent the impact of δaSUSY
µ .

The corresponding plots for several observables are shown in figure 14. It is instructive

to compare them with the corresponding panels in figure 11 (where δaSUSY
µ was included

but not BR(B → Xsγ)) for the log prior. Again, we see a large shift in the distributions

of δaSUSY
µ (which now shows a strong peak in the posterior pdf near zero and a more

spread-out distribution for the profile likelihood). On the other hand, the distributions

for BR(B → Xsγ) and mh now agree much better with the experimental data (for both

statistical measures). The same remains broadly true also for the other obervables shown

in figure 14.

By examining the combined effect of all the constraints on both the CMSSM param-

eters on the observables themselves (figures 12, 13 and 14), we conclude that the precise

constraints are dependent on both the statistics and on the prior choice, although broad

trends are apparent. This means that the combined data are not yet sufficiently strong

to completely override the prior dependence. By comparing the profile likelihood for the

two priors, we see that it suffers much less from prior dependence. From figure 14 we

notice that both the posterior and the profile likelihood for all of the EW and b-physics

observables are much narrower than the likelihood, a clear sign that they are dominated

by the prior distribution and that the effect of the data is solely to cut away the points

preferred by δaSUSY
µ (compare with figure 11). On the other hand, the CDM abundance,

BR(B → Xsγ) and the Higgs mass limit are all in good agreement with both statistics. In

contrast, the δaSUSY
µ constraint cannot be easily fullfilled simultaneously, as shown by the

fact that the posterior and the profile likelihood do not match with the likelihood function.

Given the tension between δaSUSY
µ and the other observables we have also carried

out a scan applying all observables but omitting the δaSUSY
µ constraint. The results are

qualitatively similar to the ones presented here, with the difference that the preference for

low masses is further reduced. This further implies that indeed the δaSUSY
µ constraint is to

a large extent overridden by all other data preferring a different region in parameter space.

5. Consistency and constraining power of the observables

We now come back to examining in more detail the tension between the constraints from
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Figure 12: As in figure 5, but for a scan including all the constraints listed in table 3 (ALL).
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Figure 13: As in figure 6, but but for a scan including all the constraints listed in table 3 (ALL).

The change in the numerical evaluation of the profile likelihood for scans with different priors is

due to the change in the efficiency with which the algorithm finds good-fitting points for the two

different choices of metric, especially for small SUSY masses.

δaSUSY
µ and BR(B → Xsγ) which we have already emphasized above. (Compare figures 7

and 8 with figures 9 and 10, respectively.)

5.1 Priors and a tension between δaSUSY

µ
and BR(B → Xsγ)

The tension is clearly exposed in figure 15 where we include all the constraints (ALL). It is

stronger with flat priors but remains substantial also in the case of log priors, and therefore
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Figure 14: As in figure 12 (ALL), but for the main observables.

stronger for the posterior pdf than for the profile likelihood since the former is more strongly

prior dependent. We notice that the best fit point (cross) depends on the choice of prior

quite strongly, with the log prior case able to find a point that has lower value of the

masses and hence larger SUSY contributions to δaSUSY
µ . On the contrary, the posterior

mean (circle) is very similar in both cases. This is because the posterior distribution tends

to favor regions with low δaSUSY
µ once all constraints are taken into account, and even the

change of priors can extend the 95% contour only mildly towards larger δaSUSY
µ values.

The influence of priors and their interaction with the δaSUSY
µ and BR(B → Xsγ)

constraints is further investigated in figure 16, where we plot equally weighted samples
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Figure 15: 2D posterior pdf (left column) and profile likelihood (right column) for δaSUSY
µ and

BR(B → Xsγ) for the flat (upper row) and log priors (lower row) from a scan including constraints

from all available observations (ALL). Notice that the change in the numerical evaluation of the

profile likelihood for different priors is a consequence of the implicit change of metric in which the

scan is executed. E.g., in the region of small SUSY masses (i.e., large δaSUSY
µ values) the log prior

scan is much more detailed and can find better fitting points in that region that might have been

missed by the linear prior scan.

from the posterior pdf, hence the density of points represents probability density. The

top panels show the probability density for δaSUSY
µ vs m0, while the bottom row shows

BR(B → Xsγ) vs m0. Red points are for the log prior case, green for the flat prior. From

left to right, we change the sets of constraints being imposed. The panels in the first column

on the left have only physicality constraints, nuisance parameters constraints, Higgs and

superpartner masses limits and the CDM abundance constraint imposed. The flat priors

give a fairly large mass to the FP region, hence the predictions are dominated by the

asymptotic SM value, δaSUSY
µ ∼ 0 while BR(B → Xsγ) ∼ 3.11× 10−4. Both observational
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Figure 16: Distribution of samples from the posterior pdf, showing the preferred values for δaSUSY
µ

(top panels) and BR(B → Xsγ) (bottom panels) for different combinations of constraints. Since

the samples are drawn from the pdf, their density reflects the region’s probability. Green points

are for flat priors, red for log priors. The horizontal dashed lines give the 1σ interval preferred by

observations, the solid line is the central value. The samples have been thinned by a factor of 20

for visualisation purposes.

constraints (the horizontal dashed lines give 1σ regions from the likelihood) prefer different

values — hence the tension between the prior structure (and the CDM constrain) and both

δaSUSY
µ and BR(B → Xsγ).

Once the BR(B → Xsγ) constrain is further imposed (second column from the left),

this has the effect of strongly shifting the preference towards the FP region, as pointed

out in [12] and explained above. Notice how, as a consequence, the favored range of

δaSUSY
µ collapses even further towards zero, hence making the observed anomalous magnetic

moment even more discrepant with the CMSSM favored range.

In contrast, imposing the δaSUSY
µ constraint instead of BR(B → Xsγ) (third column

from the left) has the effect of shifting the bulk of the probability to smaller values of m0,

as low enough smuon and/or sneutrino masses are needed to produce a sufficiently large

SUSY contribution to (g − 2)µ. This, on the other hand, has the effect of selecting values

of BR(B → Xsγ) (which has not been imposed in this case) below the SM prediction, in

strong disagreement with the experimental determination.

Finally, once both the δaSUSY
µ and the BR(B → Xsγ) observations are imposed (right-

most column), the posterior settles in a compromise region, which is in fair agreement with

the BR(B → Xsγ) observation but still quite discrepant with δaSUSY
µ . This comes about

because the likelihood for δaSUSY
µ is large in the region where the other constraints, and in

particular BR(B → Xsγ) (combined with the flat prior) give a very low probability.

Hence we conclude that the only observable favoring smaller values of m1/2 and m0 is

δaSUSY
µ , while all the ones are either neutral or, as is the case with especially BR(B → Xsγ),

favor the FP region [12].
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Constraints Data Flat priors Log priors

points χ2
min 〈χ2〉 DKL χ2

min 〈χ2〉 DKL

PHYS+NUIS 4 0.06 3.89 1.00 0.02 3.88 1.00

+CDM 5 0.05 4.36 3.22 0.10 4.32 2.59

+BSG 5 0.31 6.48 1.11 0.10 5.48 1.21

+GM2 5 0.27 11.55 1.35 0.13 6.38 1.20

+COLL+CDM 5+ 0.28 4.60 3.20 0.15 5.04 2.98

+COLL+BSG 5+ 0.99 6.82 1.11 0.45 6.54 1.24

+COLL+GM2 5+ 1.79 13.43 1.10 0.17 9.92 1.49

+COLL+CDM+BSG 6+ 0.75 7.15 3.36 0.68 7.72 3.29

+COLL+CDM+GM2 6+ 0.62 9.24 2.90 0.43 7.49 3.23

+COLL+CDM+BSG+GM2 7+ 6.27 15.83 3.48 4.67 14.89 3.39

ALL but GM2 10+ 3.51 9.45 3.42 3.22 9.51 3.28

ALL but CDM 10+ 12.17 18.86 1.10 4.14 18.30 1.24

ALL 11+ 13.51 19.29 3.38 11.90 18.41 3.26

Table 4: Best-fit chi-square, χ2
min, average chi-square over the posterior, 〈χ2〉, and amount of

information contained in the data, quantified using the KL divergence criterion (DKL column,

given by eq. (2.10)). The information content has been normalized to the information from priors

alone with physicality and nuisance constraints imposed (PHYS+NUIS). The column “Data points”

gives the number of constraints applied, where a + indicates that collider limits on the Higgs and

superpartner masses have been applied.

5.2 Quality of fit and information content

In the light of the different constraining power of the observables, it is interesting to in-

vestigate summary statistics for the information content and the quality of fit including

different combinations of data and for the two choices of priors. This is given in table 4.

The information content is quantified using the KL divergence, which gives the information

increase in going from the prior to the posterior, and for each prior is normalized to the

information from priors alone with physicality and nuisance constraints imposed.

First, looking at the quality of fit statistics (both the minimum χ2 and the average

of the χ2 over the posterior), we notice that when the δaSUSY
µ constraint is added on

top of BR(B → Xsγ), the quality of fit worsens dramatically, for both choices of priors.

This reflects the tension between the two observables. Even when the δaSUSY
µ constraint

is applied on its own (cases +GM2 and +COLL+GM2), the fit can only achieve a fairly poor

average χ2, with the situation being worse for the flat prior scan which gives more weight to

the FP region, which is at odds with the δaSUSY
µ experimental value. Also, the best-fit χ2 is

around 3 for both priors when we include all observables but δaSUSY
µ (case ALL but GM2).

Such a fit has nominally 2 degrees of freedom (dof), if we neglect the effect of imposing the

collider limits. So a classical quality of fit test would give a χ2/dof of 1.5 which is not very

large. (Although of course one has to keep in mind that such a value is difficult to interpret

statistically, as clearly the χ2 is not chi-square distributed here!) However, when δaSUSY
µ is

added (case ALL), the best-fit value becomes about three times worse, giving χ2/dof > 6,
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Figure 17: Posterior pdf for the gluino mass and the lightest Higgs, for flat priors (top panels) and

log priors (bottom panels) for different combinations of data. The constraints applied increase with

increasing line thickness. Within each panel: the dotted black line has only physicality constraints

(PHYS), the blue, dashed line has physicality constraints, SM parameters constraints, collider Higgs

and superpartner masses limits and CDM abundance data imposed (PHYS+NUIS+COLL+CDM), the

thickest, solid red line has all constraints applied (ALL). Though not plotted in the figure, the

profile likelihood shows a qualitatively similar behaviour.

which is clearly unacceptable. This indicate again a strong tension between δaSUSY
µ and

the remaining observables, which do not appear to be able to be fulfilled all at the same

time within the CMSSM.

Second, the best-fit χ2 values and the posterior χ2 average are almost invariably better

(albeit often not dramatically so) for the log prior scan. For the best-fit values, this is a

consequence of the finer detail with which the low mass region can be explored with this

prior, and therefore the scan is able to find better fitting points that can be more easily

missed by the flat prior scan. The better average values reflect the fact that the log prior

scan finds in general better fitting points than the flat priors one.

Finally, the information gain with respect to both priors is dominated by the CDM

constraint, which alone accounts for about 80% of the combined constraining power of all

the data in the log prior case and for about 95% of the constraining power for the flat prior

case. This follows from taking the ratio of the DKL value for the case +CDM with the ALL

case. Taken on their own, each of the BR(B → Xsγ) and the δaSUSY
µ observables have less

than half the constraining power of the CDM abundance (compare the DKL values of the

+CDM case with either +BSG or +GM2). When added on top of CDM, they only contribute

about an extra 10% information on the parameters at most. This is also evident from

the case ALL but CDM, where all the constraints have been applied except for the CDM

abundance. In this case the information content is only very mildly increased from the

PHYS+NUIS value.
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6. Some implications for LHC and DM searches

We now discuss some ensuing implications for prospects of experimental CMSSM tests

at the LHC and in DM searches. We start by plotting in figure 17 the posterior pdf

for the gluino mass meg and the lightest Higgs mass mh for the flat and log priors and

for different combinations of data. (The profile likelihood has a broadly similar behavior

and is not shown in the figure.) Since meg ≃ 2.7m1/2, its posterior distributions (including

only physicality constraints PHYS marked with dotted black; the case PHYS+NUIS+COLL+CDM

with dashed blue; and all constraints, ALL, with solid red) reflect the respective plots of

m1/2 in figures 1, 5 and 12. (Although the plot only shows the range up to 6 TeV, the

pdf for PHYS remains approximately flat up to ∼ 8 TeV.) In the case of the flat prior

one can observe a significant narrowing of the spread of meg due to the increasing number

of constraints applied (corresponding to increasing line thickness). The log prior instead

(bottom left panel of figure 17) features a shift of meg towards lower values (∼< 2 TeV)

almost independently of the constraining power of the data applied — a reflection of the

log prior giving more weight to lower values of m1/2 and m0, as mentioned earlier. The

dependence of meg on the prior choice is still significant but, with the LHC reach expected

to be around 2.7 − 3 TeV, most of the gluino mass range will be explored even in the less

optimistic case of the flat prior [6, 12].

Turning next to the light Higgs, in the CMSSM in most cases its couplings to ZZ and

WW closely resemble those of the SM Higgs boson with the same mass. (However, note

some exceptions mentioned in subsection 4.2.) With both priors the posterior pdf again

peaks more strongly and shifts to the left with an increasing number of constraints. After

all the constraints have been applied, the posterior features a rather sharp cutoff around

122 GeV, similarly to the result of our detailed study [11]. (Note also that for the log prior

much of the Higgs mass lies below the LEP limit on the SM-like Higgs, a reflection of our

more refined treatment of the LEP limit.) This mass range is within reach of the currently

operating Tevatron but will actually be rather challenging for the LHC where it may take

several years to explore it.

Finally, we investigate the implications for direct dark matter detection experiments.

In figure 18 in the plane spanned by σSI
p — the spin-independent cross section for DM

neutralino scattering off a proton — and the neutralino mass we plot the posterior pdf (left

panels) and the profile likelihood (right panels) for the case of the flat (upper row) and log

(lower row) priors. The current strongest experimental 90% CL limits from CDMS [50],

XENON-10 [51] and ZEPLIN-II [52] have also been marked for comparison (athough they

have not been imposed as constraints in the analysis).

Our presentation here follows our earlier studies [6, 13, 11, 12] where the direct detec-

tion quantities were discussed, accounting fully for the first time for all relevant particle

physics sources of uncertainty and marginalising over nuisance parameters. (There still

remain hadronic uncertainties which can change σSI
p by up to a factor of ten [53].) It was

shown that, with flat priors, the strong preference for the FP region leads to a rather

optimistic scenario for spin-independent scattering off a nucleon, as most of the posterior

probability was found to be concentrated around σSI
p ∼ 10−8 pb.
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Figure 18: Posterior pdf (left column) and profile likelihood (right column) for the spin-

independent scattering cross section of the neutralino WIMP off a proton versus the neutralino

mass, for flat priors (top row) and log priors (bottom row), for a scan including all available con-

straints (ALL). The inner and outer contours enclose the respective 68% and 95% regions for both

statistics. The cross gives the best-fit point, the filled circle is the posterior mean. We also plot some

recent 90% upper limits for comparison (which, however, have not been included as constraints in

the scan).

Our updated results in figure 18 still show such relatively high value (and a long mχ-

dependent tail) for the posterior pdf for the flat prior. The profile likelihood follows a

similar trend, but shows a somewhat stronger preference for large values of σSI
p , with the

best-fit point around σSI
p ∼ 1.7 × 10−8 pb. Applying the log prior (which favors lower

masses) reduces significantly the contribution from the FP region. The best-fit point shifts
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to a value which is about one order of magnitude below the best-fit point found with the

flat prior scan. (However notice from table 4 that the quality of fit of both points is very

similar.) Finally, we have also investigated the case where all constraints but the δaSUSY
µ

observation are applied. Although this is not shown here, this case yields very similar

results to the case ALL plotted in figure 18.

The dependence on the choice of priors remains significant, which calls for caution

in drawing strong conclusions regarding prospects for DM searches.9 Despite this, with

experiments aiming to reach down to 10−10 pb most of the high-probability range of σSI
p

will be covered.

In conclusion, the current data are not yet constraining enough to allow one to reliably

predict values of some key observables discussed here. However, even at present the pre-

dicted spread of their values makes prospects for LHC searches for gluino and light Higgs

(the latter also at the Tevatron) and DM searches in direct detection highly encouraging.

7. Summary and conclusions

We have subjected current constraints for the CMSSM parameters to a detailed scrutiny

using a state-of-the art scanning technique (MultiNest) which reduces the computational

burden by over 2 orders of magnitude with respect to previously employed MCMC tech-

niques. We investigated the impact of prior choices and of applying different combinations

of constraints, both from the point of view of Bayesian statistics and using the profile

likelihood. We have updated and applied all relevant constraints, from cosmology, collider

limits, EW observables, b→ sγ, δaSUSY
µ and b-physics.

We have found that current data are not yet constraining enough to allow drawing

statistically robust conclusions on allowed ranges for the CMSSM parameters. Conclusions

regarding the value of m0 and tanβ are particularly sensitive to the choice of priors,

statistics and data included. We find that in general values of m1/2 ∼< 2 TeV are preferred,

while for A0 positive values are weakly favored. We have highlighted the complex interplay

between priors, observables and statistics, which intrinsically limits the constraining power

of the observables on the value of the CMSSM parameters.

For this reason we feel that it is difficult to argue that one choice of parameters is in

some sense or another superior to any other. In particular, the standard choice of CMSSM

parameters as given by (3.1) is as good as the “fundamental” set in terms of µ and B

advocated in [18, 19]. In fact, if the choice of parameterization strongly impacts on the

predictions for the measurable quantities (e.g., σSI
p , as in ref. [19]), this should be interpreted

as a case in which theoretical prejudice plays a stronger role than the constraints from the

data. Clearly, better data are required in order to be able to constrain univocally (i.e.,

independently of the choice of priors and statistics) the parameters of the model. This

conclusion is expected to apply more generally to more complex phenomenological models,

with a larger number of free parameters than the CMSSM.

9It was recently argued in ref. [19] that, using a different parameterization of the CMSSM leads to even

more optimistic detection prospects. This dependence on the choice of parameterization can be seen as

another way of phrasing the prior dependence and therefore the same caution applies in this case.
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Among the observables, the most constraining role is played by Ωχh
2, mh, BR(B →

Xsγ) and δaSUSY
µ . The latter (still somewhat controversial) constraint is singular in favoring

smaller m1/2 and m0 but in a numerical analysis its impact becomes outweighted by the

other constraints, especially BR(B → Xsγ) which favors the FP region. The numerical

measure of tension between the two constraints is prior dependent but it is clear that both

favor different regions of the CMSSM parameter space.

In the light of our results, some comments are in order about the conclusions obtained

in our previous works [11 – 14]. Our previous findings regarding the posterior obtained

with flat priors have been confirmed by the present analysis obtained using a different

scanning algorithm. In particular, the preference for the FP region brought about by

BR(B → Xsγ) [12] has been exposed here more clearly, and the tension with the δaSUSY
µ

measurement we had previously remarked has been further highlighted. As far as one

is prepared to assume flat priors, these conclusions are therefore solid. This work has

further investigated previous hints that current data are however not sufficiently strong

to give conclusions that are fully independent on prior assumptions. This has allowed us

to reinforce previous cautionary warnings on the interpretation of the posterior, which at

present is still strongly influenced by the prior for some of the quantities. We also pointed

out that the numerical evaluation of the profile likelihood is not immune from the influence

of the chosen prior measure. Regarding direct and indirect detection prospects, we found

that our previous predictions for direct detection experiments [13] are robust with respect

to changes in the prior and in the statistical measure. Although we have not addressed

indirect detection prospects in this work (see [14]), qualitatively we expect that the result

will be dominated by residual astrophysical uncertainties (galactic halo profile, propagation

parameters, boost factor) rather than by the statistical issues connected with the particle

physics aspect. Therefore we can conclude that the results of [14] qualitatively hold true.

We have quantified the information content of the different combination of data using

an information-theoretical measure and have found that it is dominated (about 80% for log

priors and about 95% for flat priors) by the constraining power of the cosmological dark

matter abundance determination.

Finally, despite the above uncertainties, prospects for dark matter direct detection and

superpartner discovery at the LHC remain fairly positive.

Note added: when this work was being finalized, a paper [3] appeared which employs

an MCMC chi-square analysis of the CMSSM and seems to be reaching rather different

conclusions. Ref. [3] favors the region of much lower m0 ∼< 250 GeV (at 68% CL) and it

also claims that the determination of Ωχh
2 is not very relevant in constraining the CMSSM

parameters. We note that, compared to [2], the chi-square expression employed in [3] no

longer contains an extra term whose role was to suppress (somewhat artificially) the weight

of the FP region. Also, contrary to refs [2, 3], Ωχh
2 cannot be used to unambigously

determine m0 in terms of the other CMSSM parameters if one also varies SM parameters,

e.g., Mt (compare figure 4 in ref. [12]). Furthermore, there are some indications that the

code used in refs [2, 3] (FeynHiggs) to derive the light Higgs mass value might disagree with

the results obtained using SOFTSUSY (employed here) [54]. However, without a detailed
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Figure 19: Cartoon illustrating (left panel) the posterior of a two dimensional problem; and

(right panel) the transformed L(X) function where the prior volumes Xi are associated with each

likelihood Li.

comparison of the numerical outputs (which we have invited the authors of [3] to carry

out), we are at present unable to track down conclusively the reasons for the discrepancies

between our conclusions.
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A. Nested sampling and the MultiNest algorithm

Nested sampling [22] is a Monte Carlo technique aimed at efficient evaluation of the

Bayesian evidence, but also produces posterior inferences as a by-product. It calculates the

evidence by transforming the multi-dimensional evidence integral into a one-dimensional

integral that is easy to evaluate numerically. This is accomplished by defining the prior
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volume X as dX = p(m)dDm, so that

X(λ) =

∫

L(m)>λ
p(m)dm, (A.1)

where L(m) ≡ p(d|m) is the likelihood function and the integral extends over the region(s)

of parameter space contained within the iso-likelihood contour L(m) = λ. Assuming that

L(X), i.e. the inverse of (A.1), is a monotonically decreasing function of X (which is

trivially satisfied for most posteriors), the evidence integral (2.3) can then be written as

Z ≡ p(d) =

∫ 1

0
L(X)dX. (A.2)

Thus, if one can evaluate the likelihoods Lj = L(Xj), where Xj is a sequence of decreas-

ing values,

0 < XM < · · · < X2 < X1 < X0 = 1, (A.3)

as shown schematically in figure 19, the evidence can be approximated numerically using

standard quadrature methods as a weighted sum

Z =

M
∑

i=1

Liwi. (A.4)

In the following we will use the simple trapezium rule, for which the weights are given by

wi = 1
2 (Xi−1 − Xi+1). An example of a posterior in two dimensions and its associated

function L(X) is shown in figure 19.

This technique allows to reduce the computational burden to about 105

likelihood evaluations.

A.1 Evidence evaluation

The nested sampling algorithm performs the summation (A.4) as follows. To begin, the

iteration counter is set to i = 0 and N “live” (or “active”) samples are drawn from the

full prior p(m) (which is often simply the uniform distribution over the prior range), so

the initial prior volume is X0 = 1. The samples are then sorted in order of their likelihood

and the smallest (with likelihood L0) is removed from the live set and replaced by a point

drawn from the prior subject to the constraint that the point has a likelihood L > L0. The

corresponding prior volume contained within this iso-likelihood contour will be a random

variable given by X1 = t1X0, where t1 follows the distribution Pr(t) = NtN−1 (i.e. the

probability distribution for the largest of N samples drawn uniformly from the interval

[0, 1]). At each subsequent iteration i, the discarding of the lowest likelihood point Li in the

live set, the drawing of a replacement with L > Li and the reduction of the corresponding

prior volume Xi = tiXi−1 are repeated, until the entire prior volume has been traversed.

The algorithm thus travels through nested shells of likelihood as the prior volume is reduced.

The mean and standard deviation of log t, which dominates the geometrical explo-

ration, are:

E[log t] = − 1

N
, σ[log t] =

1

N
. (A.5)

Since each value of log t is independent, after i iterations the prior volume will shrink down

such that logXi ≈ −(i±
√
i)/N . Thus, one takes Xi = exp(−i/N).
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A.2 Stopping criterion

The nested sampling algorithm should be terminated on determining the evidence to some

specified precision. One way would be to proceed until the evidence estimated at each

replacement changes by less than a specified tolerance. This could, however, underestimate

the evidence in (for example) cases where the posterior contains any narrow peaks close

to its maximum. [22] provides an adequate and robust condition by determining an upper

limit on the evidence that can be determined from the remaining set of current active

points. By selecting the maximum-likelihood Lmax in the set of active points, one can

safely assume that the largest evidence contribution that can be made by the remaining

portion of the posterior is ∆Zi = LmaxXi, i.e. the product of the remaining prior volume

and maximum likelihood value. We choose to stop when this quantity would no longer

change the final evidence estimate by some user-defined value (we use 0.5 in log-evidence).

A.3 Posterior inferences

Once the evidence Z is found, posterior inferences can be easily generated using the full

sequence of discarded points from the nested sampling process, i.e. the points with the

lowest likelihood value at each iteration i of the algorithm. Each such point is simply

assigned the probability weight

pi =
Liwi

Z . (A.6)

These samples can then be used to calculate inferences of posterior parameters such as

means, standard deviations, covariances and so on, or to construct marginalised poste-

rior distributions.

A.4 Ellipsoidal nested sampling

The most challenging task in implementing the nested sampling algorithm is drawing sam-

ples from the prior within the hard constraint L > Li at each iteration i. Employing a

naive approach that draws blindly from the prior would result in a steady decrease in the

acceptance rate of new samples with decreasing prior volume (and increasing likelihood).

Ellipsoidal nested sampling [55] tries to overcome the above problem by approximating

the iso-likelihood contour of the point to be replaced by a D-dimensional ellipsoid deter-

mined from the covariance matrix of the current set of live points. New points are then

selected from the prior within this (enlarged) ellipsoidal bound until one is obtained that

has a likelihood exceeding that of the discarded lowest-likelihood point. In the limit that

the ellipsoid coincides with the true iso-likelihood contour, the acceptance rate tends to

unity.

A.5 MultiNest algorithm

Ellipsoidal nested sampling as described above is efficient for simple uni-modal posterior

distributions without pronounced degeneracies, but is not well suited to multi-modal dis-

tributions. As advocated by [56] and shown in figure 20, the sampling efficiency can be

substantially improved by identifying distinct clusters of live points that are well separated
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Figure 20: Cartoon of ellipsoidal nested sampling from a simple bimodal distribution. In the

leftmost panel, we see that the ellipsoid (in red) represents a good bound to the active region

(represented by the shaded isolikelihood contours). Going towards the r.h.s., as we nest inward we

can see that the acceptance rate will rapidly decrease as the bound steadily worsens. The final,

rightmost picture underneath illustrates the increase in efficiency obtained by sampling from each

clustered region separately.

and constructing an individual ellipsoid for each cluster. In some problems, however, some

modes of the posterior might possess a pronounced curving degeneracy so that it more

closely resembles a (multi-dimensional) ‘banana’. Such features are problematic for all

sampling methods, including the above mentioned clustered ellipsoidal sampling technique

of [56]. To sample with maximum efficiency from such distributions, MultiNest algorithm

divides the live point set into sub-clusters which are then enclosed in ellipsoids and a new

point is then drawn uniformly from the region enclosed by these ‘overlapping’ ellipsoids.

The number of points in an individual sub-cluster and the total number of sub-clusters is

decided by a an ‘expectation-maximization’ algorithm so that the total sampling volume,

which is equal to the sum of volumes of the ellipsoids enclosing the sub-clusters, is mini-

mized. This allows maximum flexibility and efficiency by breaking up a mode resembling

a Gaussian into a relatively small number of sub-clusters. If on the contrary the poste-

rior mode possesses a pronounced curving degeneracy so that it more closely resembles

a (multi-dimensional) ‘banana’, then it is broken into a relatively large number of small

‘overlapping’ ellipsoids. The essence of this modification is illustrated in figure 21.

The progress of the MultiNest algorithm is controlled by two main parameters: (i) the

number of live points N ; (ii) the maximum efficiency f . These values can be chosen quite

easily as outlined below. First, N should be large enough that, in the initial sampling from

the full prior space, there is a high probability that at least one point lies in the ‘basin of

attraction’ of each mode of the posterior. In later iterations, live points will then tend to

populate these modes. It should be remembered, of course, that N must always exceed

the dimensionality D of the parameter space. Also, in order to calculate the evidence

accurately, N should be sufficiently large so that all the regions of the parameter space are

sampled adequately. The parameter f controls the sampling volume Vi at the ith iteration,

which is equal to the sum of the volumes of the ellipsoids enclosing the live point set,

such that:

Vi ≥ Xif (A.7)

where Xi is the prior volume at the ith iteration of MultiNest algorithm and Vi > Xif in

the case when at the ith iteration, no set of ellipsoids enclosing the N live points can be

found such that the sum of their volumes, Vi, is smaller than the prior volume, Xi.

For all the models analysed in this paper, we used 4, 000 live points with maximum

efficiency f set to 1. This corresponds to around 500, 000 likelihood evaluations taking

approximately 48 hours on 4 3.0GHz Intel Woodcrest processors.
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Figure 21: Cartoon of the sub-clustering approach used to deal with degeneracies. The true

iso-likelihood contour contains the shaded region. The large enclosing ellipse is typical of that

constructed using our basic method, whereas sub-clustering produces the set of small ellipses.
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